

Course Title: Organic Reactions Mechanisms

Course Code: 335 CHEM-3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 28 December 2022

Table of Contents:

Content			
A. General information about the course:	3		
1. Teaching mode (mark all that apply)	4		
2. Contact Hours (based on the academic semester)	4		
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assess			
C. Course Content			
D. Students Assessment Activities	6		
E. Learning Resources and Facilities	7		
1. References and Learning Resources	7		
2. Required Facilities and equipment	7		
F. Assessment of Course Quality	8		
G. Specification Approval Data	8		
H. Attachments	9		
1- Practical Work	9		

A. General information about the course:

Со	Course Identification						
1.	Credit hours:	3h					
2. (Course type						
a.	University □	College □	Departmen	t⊠	Track□	Others□	
b.	Required ⊠	Elective□					
3.	3. Level/year at which this course is offered: Level 8 Year 3						

4. Course general Description

1. Course Description

Course Title	Course Number	Contact Hours (CH)		Credit unit (CU)	Year	Level	Pre-
	Number	Lec.	Prac.	rear	Lever	requisite	
Organic Reaction Mechanisms	335СНЕМ -3	2	2	3	3	8	232CHEM -2

Course objectives: They are to identify the following.

- 1. Types of organic reactions.
- 2. Identify the factors affecting the mechanism of organic reactions.
- 3. Identification of substitution, elimination and addition reactions.
- 4. Studying the rection mechanisms of the reactions.
- 5. Recognition of the role of Stereochemistry during the mechanism of reactions.

Syllabus: A-Theoretical contents

A general introduction to the mechanics of organic reactions - include(atomic orbitals - the bonds in organic compounds - properties of organic reactions) Classification of organic reactions - Electrophilic substitution in aromatic systems, Nucleophilic substitution reaction (SN1, SN2) on saturated carbon atom; mechanistic pathways, nature of the transition state and relative reactivity, Elimination reaction (E1, E2); mechanistic pathways, nature of the transition state and relative reactivity, rearrangement reactions, Addition reactions on carbonyl group, Addition reactions at (C=C) double bond, Name reactions.

Syllabus*: B-Practical contents

Selected experiments related to the course topics.

*See attachment

- 5. Pre-requirements for this course (if any): 232 CHEM-3
- 6. Co-requirements for this course (if any): None

7. Course Main Objective(s)

This course aims to expertise students, types of reactions and their basic principles of organic reactions mechanisms (atomic orbitals-the bonds in organic compounds - properties of organic reactions) etc...

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	
3.	Field	22
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding be able to)	; (Upon con	npletion of the cour	se, student will
1.1	Demonstrate abroad knowledge and understanding in, fundamental principles of organic chemistry that include chemical bonding, breaking of a covalent bond, stereochemistry, chemical reactions and mechanism. (P)	K (1.1)	lecture / discussion Seminars /presentation	Objective question
1.2	Describe the synthesis and analysis of organic reaction mechanisms and their products. (P)	K (1.2)	lecture / discussion Seminars /presentation	Objective question
2.0	Skills; (Upon completion of the	e course, st	udent will be able to	0)
2.1	Demonstrate the knowledge and skills required to Predict the reactivity of an organic compound from its structure and explain the multi-step synthesis of organic compounds. (P)	S (2.1)	lecture / discussion Seminars /presentation	Objective question
2.2	Perform experiments as well as accurately record and analyze the results of such experiments. (P)	S (2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper Procedures and regulations for safe handling when using chemicals. (I)	S (2.3)	lab demonstrations / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responstudent will be able to)	onsibility;(Upon completion	of the course,

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
3.1	Working as a group leader or a member of a team. (I)	V (3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	A general introduction to the mechanics of organic reactions – include (atomic orbitals - the bonds in organic compounds - properties of organic reactions).	3
2.	Electrophilic substitution in aromatic systems.	3
	Nucleophilic substitution reaction (SN1, SN2) on saturated carbon atom;	
3.	mechanistic pathways, nature of the transition state and relative reactivity.	4
4.	Elimination reaction (E1, E2); mechanistic pathways, nature of the transition state and relative reactivity.	4
5.	Addition reactions on carbonyl group.	2
6.	Addition of double bond.	2
7.	Introduction to rearrangement reactions.	2
8.	Name reactions.	2
	Experimental Part	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	3-8	2%
2.	Lecture Quizzes	5-7	3%
3.	Mid-term exam	6-8	15%
4.	LAB Sheet	11	5%
5.	Quiz in Safety	11	4%
6.	Final practical exam	11	7%
7.	Lab report	Through Semester	10%

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
8.	Group work evaluation	Through Semester	4%
9.	Final Exam	12-14	50%
	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Peter sykes/ A guide book to the mechanism in organic chemistry. Jerry March / Advanced organic chemistry- Reactions, Mechanisms, Structures. Organic Reactions, Larry E. Overman, John Wiley & Sons, 2002. Organic Reaction Mechanisms, Gallego, Techmedia, 2004 Advanced Organic Chemistry: Part A: Structure And Mechanisms, Carey, Springer Verlag Gmgh, 2007. 		
Supportive References	1- A Guidebook to Mechanism in Organic Chemistry, Peter Sykes Third Edition, longman U.K., (1996).2- Understanding Organic Reaction Mechanisms, Adam Jacobs, Cambridge University Press, 1997.		
Electronic Materials	https://doi.org/10.1036/1097-8542.475400 https://app.knovel.com/web/toc.v/cid:kpAOCRM002/viewerType:toc/		
Other Learning Materials	 Computer-based programs/ ChemDraw http://en.wikipedia.org/ http://www.chemhelper.com/mechanisms.html https://chem.libretexts.org/Special:Search?qid=&fpid=230 &fpth=&query=organic+reaction+mechanism&type=wiki 		

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms capacity (30) students. Lab capacity (15) students.
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet.
Other equipment (depending on the nature of the specialty)	Chemical Models, scientific videos

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect
Effectiveness of student's assessment	Instructor & Course coordinator	Class room evaluation (direct and indirect)
Quality of learning resources	Program committee	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	Chemistry Department Council CHEMS2301
REFERENCE NO.	CHEMS230104
DATE	11/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work

No.	List of Topics	APPARAT US	CHEMICAL	Week	Cont act Hrs
1	Introduction of course 1- Definition of safety in the laboratory 2- Identification of Carboxylic acid organic compounds 3- Identification of carbohydrate. 4-Identification of hydrocarbon. 5- Identification of phenols, 6- Identification of salts of acid (amm. And metallic) 7- Identification of Base	Flame distilled water - test tubes - Beaker- flask	Carboxylic acids, carbohydrates, phenols, Base, HCl, NaOH, Na₂CO₃	1	2
2	Acid + Acid mixture	Filter paper Glass (Beakers- Separating funnel-Conical Flask-Test Tube - Glass plate measuring cylinder.	Aliphatic acid (Oxalic acid- Tartic acid- (Citric acid- Succinic acid-) -Aromatic acid (Benzoic acid- Phthalic acid- Salicylic acid-Phenyl acetic acid cinnamic acid) Regent (CaCl ₂ -FeCl ₃ - NH ₄ OH, NaOH KMnO ₄ , H ₂ SO ₄ , Con. HCl, NaHCO ₃ , Na ₂ CO ₃ Resorcinol- ethanol, methanol.	1	2
3	Acid + Phenols	Filter paper Glass (Beakers- Separating funnel- Conical Flask-Test Tube - Glass plate measuring cylinder.	Aliphatic acid (Oxalic acid- Tartaric acid- Citric acid- Succinic acid-) -Aromatic acid(Benzoic acid-Phthalic acid- Salicylic acid-Phenyl acetic acid cinnamic acid) -Phenol soluble in water (catechol- Hydro quinone, resorcinol- pyrogallol -Phenols insoluble water(1- naphthol-2- naphthol) -Regent (CaCl2-FeCl3- NH4OH-NaOH, KMnO4- H2SO4-Con. HCl-NaHCO3- Na2CO3-Resorcinol-	1	2

			Phenol- filter		
			paperethanol- methanol		
4	Acid + Phenols	Filter paper Glass (Beakers- Separating funnel- Conical Flask-Test Tube - Glass plate measuring cylinder.	-Aliphatic acid (Oxalic acid-Tartaric acid- Citric acid-Succinic acid) - Aromatic acid(Benzoic acid-Phthalic acid- Salicylic acid-Phenyl acetic acid cinnamic acid.) - Phenol soluble in water (catechol-quinolresorcinol-Pyrogallol-Phenols insoluble water(1-naphthol-2- naphthol) - Regent(CaCl2-FeCl3-H4OH-NaOHKMnO4-H2SO4-Con.HCl-NaHCO3-Na2CO3-Resoncenol- Phenol.	1	2
5	Base + Phenol mixture	Filter paper Glass (Beakers- Separating funnel-Conical Flask-Test Tube - Glass plate, measuring cylinder.	Phenol soluble in water (catecholquinol-resorcinol-pyrogallol - Phenols insoluble water (1-naphthol-2-naphthol) – Base(p-Toulidine-1-naphthylamine-2-naphthylamine) - Regent (CaCl2-FeCl3-NH4OH, NaOH- KMnO4-H2SO4-Con.HCl-NaHCO3-Na2CO3-Resorcinol-Phenol.	1	2
6	Acid + Neutral mixture	Filter paper Glass (Beakers- Separating funnel-Conical Flask-Test Tube - Glass plate, measuring cylinder.	Aliphatic acid (Oxalic acid-Tartaric acid- Citric acid-Succinic acid-) -Aromatic acid (Benzoic acid-Phthalic acid- Salicylic acid-Phenyl acetic acid cinnamicacid)-Carbohydrate (Glucose-Galatose- Fructose-Lactose-Maltose-Starch-Sucrose)- Hydrocarbons (naphthane-Ancerthane) - Salts of metallic and Salts of ammonium) -Regent (CaCl2-FeCl3-NH4OH-NaOHKMnO4-H2SO4-Con. HCl-NaHCO3-Na2CO3- Resorcinol-	1	2

			Phenol-1-naphthol-Feling		
			regents-Berfored Regent-		
			picric acid- acetone-		
			ethanol.		
7	Base + Neutral mixture	Filter paper	Carbohydrate (Glucose-	1	2
		Glass	Galatose-Fructose-		
		(Beakers-	Lactose-Maltose-Starch-		
		Separating	Sucrose) -		
		funnel-Conical	Hydrocarbons(naphthane-		
		Flask-Test	Anthracene) -Salts of		
		Tube - Glass	metallic and Salts of		
		plate,	ammonium		
		measuring)-Base (p-Toulidine-1-		
		cylinder.	naphthylamine-2-		
			naphthylamine)		
			- Regent (CaCl ₂ -FeCl ₃ -		
			NH4OHNaOH- KMnO4-		
			H ₂ SO ₄ -Con. HCl- NaHCO ₃ -		
			Na ₂ CO ₃ - Resorcinol-		
			Phenol, ethanol-		
			methanol.		
8	Phenol + Neutral mixture	Filter paper	Phenol soluble in water	2	4
		Glass	(catechol-		
		(Beakers-	quinolresorcinol-		
		Separating	PyrogallolPhenols		
		funnel-Conical	insoluble water(1-		
		Flask-Test	naphthol-2-		
		Tube - Glass	naphthol) - Carbohydrate		
		plate,	(Glucose-Galatose-		
		measuring	Fructose-Lactose-		
		cylinder.	Maltose-Starch- Sucrose)		
			-		
			Hydrocarbons(naphthane-		
			Ancerthane) -Salts of		
			metallic and Salts of		
			ammonium)-		
			- Regent (CaCl2-FeCl3-		
			NH4OHNaOH- KMnO4-		
			H ₂ SO ₄ -Con. HCl- NaHCO ₃ -		
			Na ₂ CO ₃ - Resorcinol-		
			Phenol		
	Newtonia New Local	F:IL.	-ethanol-methanol.		
9	Neutral + Neural mixture	Filter paper	Carbohydrate (Glucose-	2	4
		Glass	Galatose-Fructose-		
		(Beakers-	Lactose-Maltose-Starch-		
		Separating	Sucrose)		
		funnel-Conical	-Hydrocarbons		
		Flask-Test	(naphthalene-		
		Tube - Glass	Anthracene) -Salts of		

		plate	metal lic and Salts of		
		measuring	ammonium)		
		cylinder.	-Regent (CaCl2-FeCl3-		
			NH4OH-NaOHKMnO4-		
			H ₂ SO ₄ -Con. HCl-NaHCO ₃ -		
		Na ₂ CO ₃ - Resorcinol-			
			Phenol- ethanol-		
			methanol.		
10	Final exam			11	22

2- Blue Print

Course Name	Organic Reactions Mechanism
Course Code	335 CHEM-3

	PLC CLC		K1	K2	S1 2.1	S2 2.2	S3 2.3	S4 	V1 3.1	V2
	Mar		15	21	34	22	4		4	
Locumina	. . .	PLOs	CLOs		Assessme nt Type		Assessme nt Tool	No of Onestion	S S Z	the Assessme Weight of the

Learning Domain	PLOs	CLOs	Assessme nt Type	Assessme nt Tool	No of Question s	Marks of the	Weight of the Assessme
50	K1	1.1	Mid term	Objective question	1	5	5
e &	K1	(15 M)	Final Exam	Objective question	1	10	10
edg			Quiz	Objective question	2	2	2
Knowledge & understanding	K2	1.2	Homework	Solving Problems	3	1	1
Kng		(21 M)	Mid term	Objective question	2	5	5
_ 5			Final Exam	Objective question	2	13	13
	S1	1.2 (34M)	Midterm	Objective question	2	5	5
			Quiz	Objective question	1	1	1
			Homework	Solving Problems	4	1	1
<u> </u>			Final Exam	Objective question	3	27	27
Skills		2.2 (22 M)	Practical Sheet	Objective question	3	5	5
S 2	S2		Lab Report	10 EXP.		10	10
		(22 11)	Final Lab Exam	Task	7	7	7
	S3	2.3 (4 M)	Safety EXAM	Objective question	8	4	4
Value	V1	3.1 (4 M)	Continuous assessment	Group evaluation rubric	-	4	4
TOTA	L	100					100

